Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 15(2): 587-602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272853

RESUMO

BACKGROUND: CREG1 (cellular repressor of E1A-stimulated genes 1) is a protein involved in cellular differentiation and homeostasis regulation. However, its role in skeletal muscle satellite cells differentiation and muscle regeneration is poorly understood. This study aimed to investigate the role of CREG1 in myogenesis and muscle regeneration. METHODS: RNA sequencing data (GSE8479) was analysed from the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi). We generated Creg1 knockdown and skeletal muscle satellite cells specific Creg1 overexpression mice mediated by adeno-associated virus serotype 9 (AAV9), skeletal muscle mature myofibre Creg1 knockout mice (myoblast/Creg1MKO), and control mice Creg1flox/flox (Creg1fl/fl) as in vivo models. The mice were injected into tibialis anterior (TA) muscle with 100 µL of 10 µM cardiotoxin to establish a muscle regeneration model. Creg1fl/fl and Creg1MKO mice were treated with AAV-sh-C-Cbl (2 × 1010 genomic copies/mouse) to silence C-Cbl in the TA muscle. 293T and C2C12 cells were transfected with plasmids using lipofectamine RNAi MAX in vitro. Mass spectrometry analyses and RNA sequencing transcriptomic assay were performed. RESULTS: We analysed the transcriptional profiles of the skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women in GSE8479 database, and the results showed that Creg1 was associated with human sarcopenia. We found that Creg1 knockdown mice regenerated less newly formed fibres in response to cardiotoxin injection (~30% reduction, P < 0.01); however, muscle satellite cells specific Creg1 overexpression mice regenerated more newly formed fibres (~20% increase, P < 0.05). AMPKa1 is known as a key mediator in the muscle regeneration process. Our results revealed that CREG1 deficiency inhibited AMPKa1 signalling through C-CBL E3-ubiquitin ligase-mediated AMPKa1 degradation (P < 0.01). C-CBL-mediated AMPKa1 ubiquitination was attributed to the K48-linked polyubiquitination of AMPKa1 at K396 and that the modification played an important role in the regulation of AMPKa1 protein stability. We also found that Creg1MKO mice regenerated less newly formed fibres compared with Creg1fl/fl mice (~30% reduction, P < 0.01). RNA-seq analysis showed that CREG1 deletion in impaired muscles led to the upregulation of inflammation and DKK3 expression. The TA muscles of Creg1MKO mice were injected with AAV-vector or AAV-shC-Cbl, silencing C-CBL (P < 0.01) in the skeletal muscles of Creg1MKO mice significantly improved muscle regeneration induced by CTX injury (P < 0.01). CONCLUSIONS: Our findings suggest that CREG1 may be a potential therapeutic target for skeletal muscle regeneration.


Assuntos
Cardiotoxinas , Músculo Esquelético , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Cardiotoxinas/metabolismo , Diferenciação Celular/genética , Músculo Esquelético/patologia , Mioblastos/metabolismo , Regeneração
2.
Sci Rep ; 13(1): 20520, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993485

RESUMO

Benzopyrene (B[a]P) is a well-known carcinogen that can induce chronic inflammation and fibrosis in the liver, leading to liver disease upon chronic exposure. Nonalcoholic steatohepatitis (NASH) is a chronic liver condition characterized by fat accumulation, inflammation, and fibrosis, often resulting in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the intricate connections between B[a]P exposure, NASH, and HCC. Through comprehensive bioinformatics analysis of publicly available gene expression profiles, we identified differentially expressed genes (DEGs) associated with B[a]P exposure, NASH, and liver cancer. Furthermore, network analysis revealed hub genes and protein-protein interactions, highlighting cellular metabolic dysfunction and disruption of DNA damage repair in the B[a]P-NASH-HCC process. Notably, HSPA1A and PPARGC1A emerged as significant genes in this pathway. To validate their involvement, we conducted qPCR analysis on cell lines and NASH mouse liver tissues and performed immunohistochemistry labeling in mouse and human HCC liver sections. These findings provide crucial insights into the potential regulatory mechanisms underlying benzopyrene-induced hepatotoxicity, shedding light on the pathogenesis of B[a]P-associated NASH and HCC. Moreover, our study suggests that HSPA1A and PPARGC1A could serve as promising therapeutic targets. Enhancing our understanding of their regulatory roles may facilitate the development of targeted therapies, leading to improved patient outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fibrose , Benzopirenos , Inflamação/complicações , Biologia Computacional
3.
Exp Mol Med ; 55(9): 2025-2038, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37658156

RESUMO

Autophagy plays an important role in the development of diabetic cardiomyopathy. Cellular repressor of E1A-stimulated genes 1 (CREG1) is an important myocardial protective factor. The aim of this study was to investigate the effects and mechanisms of CREG1 in diabetic cardiomyopathy. Male C57BL/6 J mice, Creg1 transgenic mice and cardiac-specific knockout mice were used to establish a type 2 diabetes model. Small animal ultrasound, Masson's staining and western blotting were used to evaluate cardiac function, myocardial fibrosis and autophagy. Neonatal mouse cardiomyocytes (NMCMs) were stimulated with palmitate, and the effects of CREG1 on NMCMs autophagy were examined. CREG1 deficiency exacerbated cardiac dysfunction, cardiac hypertrophy and fibrosis in mice with diabetic cardiomyopathy, which was accompanied by exacerbated autophagy dysfunction. CREG1 overexpression improved cardiac function and ameliorated cardiac hypertrophy and fibrosis in diabetic cardiomyopathy by improving autophagy. CREG1 protein expression was decreased in palmitate-induced NMCMs. CREG1 knockdown exacerbated cardiomyocyte hypertrophy and inhibited autophagy. CREG1 overexpression inhibited cardiomyocyte hypertrophy and improved autophagy. LAMP2 overexpression reversed the effect of CREG1 knockdown on palmitate-induced inhibition of cardiomyocyte autophagy. CREG1 inhibited LAMP2 protein degradation by inhibiting the protein expression of F-box protein 27 (FBXO27). Our findings indicate new roles of CREG1 in the development of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Proteínas F-Box , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas Repressoras , Animais , Masculino , Camundongos , Autofagia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo
4.
Int J Biol Sci ; 19(11): 3614-3627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496998

RESUMO

Abnormal megakaryocyte maturation and platelet production lead to platelet-related diseases and impact the dynamic balance between hemostasis and bleeding. Cellular repressor of E1A-stimulated gene 1 (CREG1) is a glycoprotein that promotes tissue differentiation. However, its role in megakaryocytes remains unclear. In this study, we found that CREG1 protein is expressed in platelets and megakaryocytes and was decreased in the platelets of patients with thrombocytopenia. A cytosine arabinoside-induced thrombocytopenia mouse model was established, and the mRNA and protein expression levels of CREG1 were found to be reduced in megakaryocytes. We established megakaryocyte/platelet conditional knockout (Creg1pf4-cre) and transgenic mice (tg-Creg1). Compared to Creg1fl/fl mice, Creg1pf4-cre mice exhibited thrombocytopenia, which was mainly caused by inefficient bone marrow (BM) thrombocytopoiesis, but not by apoptosis of circulating platelets. Cultured Creg1pf4-cre-megakaryocytes exhibited impairment of the actin cytoskeleton, with less filamentous actin, significantly fewer proplatelets, and lower ploidy. CREG1 directly interacts with MEK1/2 and promotes MEK1/2 phosphorylation. Thus, our study uncovered the role of CREG1 in the regulation of megakaryocyte maturation and thrombopoiesis, and it provides a possible theoretical basis for the prevention and treatment of thrombocytopenia.


Assuntos
Trombocitopenia , Trombopoese , Animais , Camundongos , Plaquetas/metabolismo , Medula Óssea , Megacariócitos/metabolismo , Camundongos Transgênicos , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombopoese/genética , Humanos
6.
JACC Basic Transl Sci ; 8(2): 155-170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908661

RESUMO

Phenotypic switching of vascular smooth muscle cells is a central process in abdominal aortic aneurysm (AAA) pathology. We found that knockdown TCF7L1 (transcription factor 7-like 1), a member of the TCF/LEF (T cell factor/lymphoid enhancer factor) family of transcription factors, inhibits vascular smooth muscle cell differentiation. This study hints at potential interventions to maintain a normal, differentiated smooth muscle cell state, thereby eliminating the pathogenesis of AAA. In addition, our study provides insights into the potential use of TCF7L1 as a biomarker for AAA.

8.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194926, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36863451

RESUMO

Aortic aneurysm (AA) is a potentially fatal disease with the possibility of rupture, causing high mortality rates with no effective drugs for the treatment of AA. The mechanism of AA, as well as its therapeutic potential to inhibit aneurysm expansion, has been minimally explored. Small non-coding RNA (miRNAs and miRs) is emerging as a new fundamental regulator of gene expression. This study aimed to explore the role and mechanism of miR-193a-5p in abdominal aortic aneurysms (AAA). In AAA vascular tissue and Angiotensin II (Ang II)-treated vascular smooth muscle cells (VSMCs), the expression of miR-193a-5 was determined using real-time quantitative PCR (RT-qPCR). Western blotting was used to detect the effects of miR-193a-5p on PCNA, CCND1, CCNE1, and CXCR4. To detect the effect of miR-193a-5p on the proliferation and migration of VSMCs, CCK-8, and EdU immunostaining, flow cytometry, wound healing, and Transwell Chamber analysis were performed. In vitro results suggest that overexpression of miR-193a-5p inhibited the proliferation and migration of VSMCs, and its inhibition aggravated their proliferation and migration. In VSMCs, miR-193a-5p mediated proliferation by regulating CCNE1 and CCND1 genes and migration by regulating CXCR4. Further, in the Ang II-induced abdominal aorta of mice, the expression of miR-193a-5p was reduced and significantly downregulated in the serum of patients with aortic aneurysm (AA). In vitro studies confirmed that Ang II-induced downregulation of miR-193a-5p in VSMCs by upregulation of the expression of the transcriptional repressor RelB in the promoter region. This study may provide new intervention targets for the prevention and treatment of AA.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Músculo Liso Vascular , Fator de Transcrição RelB , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Angiotensina II/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Movimento Celular , Proliferação de Células , Regulação para Baixo , MicroRNAs/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Fator de Transcrição RelB/metabolismo , Receptores CXCR4/metabolismo , Ciclina E/metabolismo , Ciclina D1/metabolismo
9.
Clin Res Cardiol ; 112(4): 506-517, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35704087

RESUMO

AIMS: To investigate the frequency of clonal hematopoiesis of indeterminate potential (CHIP) and evaluate its impacts on outcomes in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) in the absence of traditional cardiovascular risk factors (CVRFs). METHODS: Whole-exome sequencing was performed to detect the presence of CHIP in 183 patients underwent PCI for the treatment of ACS. The association between CHIP-related mutations and major adverse cardiac or cerebral events (MACCEs, a composite of all-cause mortality, coronary revascularization, myocardial infarction, or stroke) was analyzed in such cohort. RESULTS: Of 179 patients [median age, 65 years; 84 female (46.9%)] included in this analysis, CHIP-related mutations were detected in 36 (20.1%) patients. The somatic mutations most frequently occurred in the genes DNMT3A (17 mutations), TET2 (6 mutations), and ASXL1 (4 mutations). Clinical outcomes at median 635 follow-up days showed that DNMT3A/TET2/ASXL1-CHIP mutations were associated with significantly higher risk of MACCEs, compared with non-CHIP carriers in the CVRFs-absent ACS cohort (26.1% vs. 4.2%, log-rank P = 0.001). Multivariable regression showed that DNMT3A/TET2/ASXL1-CHIP driver mutations (HR 4.015; 95% CI 1.236-13.046; P = 0.021) were independent predictors of adverse clinical outcomes. CONCLUSION: The most frequent CHIP-related mutations, DNMT3A, TET2, and ASXL1 are significantly associated with increased risk of recurrent cardiovascular events. Our study may be valuable target to reduce residual risk in patients with ACS carrying specific mutations.


Assuntos
Síndrome Coronariana Aguda , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Feminino , Idoso , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/genética , Síndrome Coronariana Aguda/cirurgia , Hematopoiese Clonal , Intervenção Coronária Percutânea/efeitos adversos , Fatores de Risco
10.
Nat Commun ; 13(1): 7721, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513627

RESUMO

Consuming fish oils (FO) is linked to reduced risk of cardiovascular disease in certain populations. However, FO failed to exhibit therapeutic effects in some patients with cardiovascular disease. This study aimed to determine the possible reasons for the inconsistent effects of FO. AMP-activated protein kinase (AMPK) α2 is an important energy metabolic sensor, which was reported to involve in FO mediated regulation of lipid and glucose metabolism. In an in vivo study, FO administration significantly reduced the aortic lesions and inflammation in the Ldlr-/- mouse model of atherosclerosis, but not in Ldlr-/-/Prkaa2-/-and Ldlr-/-/Prkaa2-/-Sm22Cre mice. Mechanistically, inactivation of AMPKα2 increased the SUMOylation of the fatty acid receptor GPR120 to block FO-induced internalization and binding to ß-arrestin. In contrast, activation of AMPKα2 can phosphorylate the C-MYC at Serine 67 to inhibit its trans-localization into the nuclei and transcription of SUMO-conjugating E2 enzyme UBC9 and SUMO2/3 in vascular smooth muscle cells (VSMCs), which result in GPR120 SUMOylation. In human arteries, AMPKα2 levels were inversely correlated with UBC9 expression. In a cohort of patients with atherosclerosis, FO concentrations did not correlate with atherosclerotic severity, however, in a subgroup analysis a negative correlation between FO concentrations and atherosclerotic severity was found in patients with higher AMPKα2 levels. These data indicate that AMPKα2 is required for the anti-inflammatory and anti-atherosclerotic effects of FO.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Camundongos , Animais , Óleos de Peixe/farmacologia , Sumoilação , Doenças Cardiovasculares/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Miócitos de Músculo Liso/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia
11.
Front Immunol ; 13: 950441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405744

RESUMO

Objective: The occurrence of cardiovascular adverse events in the first year after ST-acute myocardial infarction (STEMI) remains high; therefore, identification of patients with poor prognosis is essential for early intervention. This study aimed to evaluate the prognostic value of metabolomics-based biomarkers in STEMI patients and explore their functional mechanisms. Methods: Metabolite profiling was performed using nuclear magnetic resonance. The plasma concentration of Kynurenine (Kyn) was measured using ultraperformance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. Major adverse cardiac and cerebral events were assessed for 1 year. A functional metabolomics strategy was proposed for investigating the role of Kyn in both vitro and vivo models. Results: The adjusted hazard ratios in STEMI patients for Kyn in the 4th quartile 7.12(5.71-10.82) was significantly higher than that in the 3rd quartile 3.03(2.62-3.74), 2nd quartile 1.86(1.70-2.03), and 1st quartile 1.20(0.93-1.39).The incidence of MACCE was significantly different among Kyn quartiles and the highest incidence of MACCE was observed in the 4th quartile when compared with the 1st quartile (9.84% vs.2.85%, P<0.001).Immunofluorescence staining indicated that indoleamine-pyrrole 2,3-dioxygenase (IDO1) was located in the CD68 positive staining area of thrombi from STEMI patients and Kyn was induced in the early phase after myocardial infarction. Kyn could trigger inflammation and oxidative stress of macrophage cells by activation of the Sirt3-acSOD2/IL-1ß signaling pathway in vitro. Conclusions: Plasma Kyn levels were positively associated with the occurrence of STEMI. Kyn could induce macrophage cells inflammation and oxidative stress by activating the Sirt3-acSOD2/IL-1ß pathway following myocardial ischemia injury. Kyn could be a robust biomarker for STEMI prognosis and reduction of Kyn could be beneficial in STEMI patients.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Sirtuína 3 , Humanos , Cinurenina , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Prognóstico , Infarto do Miocárdio/complicações , Metabolômica , Biomarcadores , Inflamação/complicações
13.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258452

RESUMO

Background: Ticagrelor is a first-line drug for the treatment of acute ST elevation myocardial infarction (STEMI). However, approximately 20% STEMI patients taking ticagrelor exhibited a delayed response and the mechanism was still unclear. Methods: To explore the mechanism of the poor response of ticagrelor in post-percutaneous coronary intervention (PCI) patients, we enrolled 65 high platelet reactivity (HPR) patients and 90 controls (normal platelet reactivity [NPR]). Pharmacokinetic assessment result showed that the plasma concentrations of ticagrelor and its metabolism production, AR-C124910XX, were lower in HPR patients than controls. Further single nucloetide polymorphism (SNP) analysis identified that there is no difference in ATP binding cassette subfamily B member 1 (ABCB1) gene expression between the NPR group and the HPR group. Metagenomic and metabolomic analyses of fecal samples showed that HPR patients had higher microbial richness and diversity. Transplantation of the gut microbiota from HPR donors to microbiota-depleted mice obviously decreased plasma concentration of ticagrelor. Results: Our findings highlight that gut microbiota dysbiosis may be an important mechanism for the ticagrelor of HPR in patients with STEMI and support that modify gut microbiota is a potential therapeutic option for STEMI. Conclusions: Our findings highlight that gut microbiota dysbiosis may be an important mechanism for the ticagrelor of HPR in patients with ST elevation myocardial infarction (STEMI) and support that modify gut microbiota is a potential therapeutic option for STEMI. Funding: NSFC 82170297 and 82070300 from the National Natural Science Foundation of China.


Assuntos
Microbioma Gastrointestinal , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Animais , Disbiose/tratamento farmacológico , Humanos , Camundongos , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/uso terapêutico , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Ticagrelor/uso terapêutico , Resultado do Tratamento
14.
Differentiation ; 125: 9-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349881

RESUMO

Vascular smooth muscle cell (SMCs) differentiation is critical for cardiovascular development, but the mechanisms remain largely unknown. The overall aim of this study was to investigate the functional impact and mechanism of cellular repressor of E1A-stimulated genes (CREG) in SMC differentiation. Two embryonic stem cell (ESC) models were generated (1) the overexpression of CREG (CREG-OE), by transfection with Pcreg-IRECS2-EGFP vector, and (2) the knockout of CREG, by transfection with CREG shRNA (CREG-KO). Interesting, SMC-marker levels (SM α-actin, SM22, Calponin, and SM-MHC) dramatically increased in CREG-OE ESCs into the SMC while significantly decreased in CREG-KO ESCs during differentiation. After 14 days, and calcium ion concentrations in angiotensin II-stimulated embryoid bodies were increased in CREG-OE ESCs but reduced in CREG-KO ESCs. Consistently, the contractile capacity of SMC from CREG-OE ESC was increased, while the contractile capacity of SMC CREG1 from CREG-KO ESCs was significantly reduced. Furthermore, we demonstrated that CREG promotes differentiation of ESCs to SMCs and maturation of their function through the transforming growth factor-ß -smad2/3 pathway.


Assuntos
Proteínas Repressoras , Fator de Crescimento Transformador beta , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
16.
Theranostics ; 12(3): 1267-1285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154486

RESUMO

Background: The continued success of oncological therapeutics is dependent on the mitigation of treatment-related adverse events, particularly cardiovascular toxicities. As such, there is an important need to understand the basic mechanisms of drug toxicities in the process of antitumor therapy. Our aim in this study was to elucidate the underlying mechanisms of sorafenib (sor)-induced cardiomyocyte damage. Methods: Primary mouse cardiomyocytes were prepared and treated with sor and various other treatments. Cardiomyocyte necroptosis was detected by flow cytometry, western blotting, and CCK8 assays. Mitochondrial Ca2+ uptake was detected by the Rhod-2 probe using confocal imaging. Morphological changes in mitochondria and mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) were imaged using transmission electron microscopy (TEM) and confocal microscopy. Cardiac perfusion was performed to detect cardiac specific role of MFN2 overexpression in vivo. Results: We reported that mitochondrial Ca2+ overload, the subsequent increase in calmodulin-dependent protein kinase II delta (CaMKIIδ) and RIP3/MLKL cascade activation, contributed to sor-induced cardiac necroptosis. Excess MAM formation and close ER-mitochondria contact were key pathogenesis of sor-induced Ca2+ overload. Sor mediated MFN2 downregulation in a concentration-dependent manner. Furthermore, we found that reduced mitofusin-2 (MFN2) level augmented sor-mediated elevated MAM biogenesis and increased mitochondria-MAM tethering in cardiomyocytes. Sor-induced Mammalian Target of Rapamycin (mTOR) inactivation, followed by the activation and nuclear translocation of Transcription Factor EB (TFEB), contributed to mitophagy and MFN2 degradation. In an in vivo model, mice subjected to sor administration developed cardiac dysfunction, autophagy activation and necroptosis; our investigation found that global and cardiac-specific overexpression of MFN2 repressed cardiac dysfunction, and sor-induced cardiomyocyte necroptosis via repressing the MAM-CaMKIIδ-RIP3/MLKL pathway. Conclusion: Sorafenib mediated cardiomyocyte necroptosis through the MFN2-MAM-Ca2+-CaMKIIδ pathway in vitro and in vivo. The overexpression of MFN2 could rescue sor-induced cardiomyocyte necroptosis without disturbing the anti-tumor effects.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , GTP Fosfo-Hidrolases , Cardiopatias , Miócitos Cardíacos , Proteínas Repressoras , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , GTP Fosfo-Hidrolases/biossíntese , GTP Fosfo-Hidrolases/metabolismo , Cardiopatias/metabolismo , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Necroptose , Proteínas Repressoras/metabolismo , Sorafenibe
17.
Mol Ther Nucleic Acids ; 27: 200-210, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34976438

RESUMO

Differentiation of preadipocytes into functional adipocytes could be a major target for repressing obesity-induced insulin resistance (IR). However, the molecular mechanisms involved in adipogenesis and the development of IR are unclear. We report, for the first time, that miR-574-5p, a novel miRNA, promotes adipogenesis to suppress IR. An increase in the level of miR-574-5p significantly induced the differentiation of preadipocytes into mature adipocytes. Conversely, reduction of miR-574-5p levels blocked the differentiation of preadipocytes in vitro. In a dual-luciferase reporter assay, it was shown that homeobox A5 (HOXA5) promoted the transcription of miR-574-5p to induce the differentiation of preadipocytes. Hdac9, a direct downstream target of miR-574-5p, was involved in the regulation of adipocyte differentiation. The overexpression of miR-574-5p also promoted adipogenesis in subcutaneous fat to alleviate IR in high-fat-diet-fed mice. Additionally, miR-574-5p expression was significantly higher in the subcutaneous adipose tissue of obese patients without type 2 diabetes than in those with type 2 diabetes. There was an increase in HOXA5 expression and a decrease in histone deacetylase 9 (HDAC9) expression in the subcutaneous fat of obese patients without type 2 diabetes. These results suggest that miR-574-5p may be a potential therapeutic target for combating obesity-related IR.

18.
Ren Fail ; 43(1): 1188-1197, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34369281

RESUMO

BACKGROUND: Atherosclerotic renal artery stenosis (ARAS) is frequently related to ischemic nephropathy, secondary hypertension, and end-stage renal failure. Thus, this study aimed to explore whether certain circulating long noncoding RNAs (lncRNAs) may be used as potential specific ARAS biomarkers. METHODS: In the present study, a microarray analysis was performed to screen for lncRNAs in renal artery tissue from four ARAS patients and four non-ARAS individuals. To identify specific lncRNAs as candidate potential biomarkers of ARAS, we used the following criteria: the fold change was set to >3.0 (compared with non-ARAS tissues), and p value cutoff was set at .05. According to these criteria, six lncRNAs were identified from 1150 lncRNAs. After validation by quantitative PCR (qPCR), these lncRNAs were independently validated in blood from groups of 18 ARAS patients, 18 non-ARAS individuals, and 18 healthy volunteers, furthermore, the predictive value of lncRNA PR11-387H17.6 was further assessed using blood from groups of 99 ARAS patients, 49 non-ARAS individuals, and 50 healthy volunteers. A receiver operating characteristic (ROC) curve analysis was performed to assess the performance of these lncRNAs as biomarkers. RESULTS: In the ROC analysis, the area under the curve (AUC) of PR11-387H17.6 was 0.733, with 52.5% sensitivity and 84.8% specificity in predicting the occurrence of ARAS. After considering the risk factors, the AUC of PR11-387H17.6 was 0.844, and the optimal sensitivity increased from 52.5% to 74.5%, although the specificity decreased from 84.8% to 81.9%. In the multivariable logistic analysis, PR11-387H17.6 was an independent predictor of major adverse events (OR: 3.039; 95% CI: 1.388-6.654; p= .006). CONCLUSIONS: PR11-387H17.6 is a potential diagnostic biomarker of ARAS. The lncRNA levels in blood cells are regulated in ARAS. Thus, further investigations of the role of lncRNAs in ARAS are warranted.


Assuntos
Aterosclerose/sangue , RNA Longo não Codificante/sangue , Obstrução da Artéria Renal/sangue , Adulto , Idoso , Área Sob a Curva , Aterosclerose/diagnóstico , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Curva ROC , Obstrução da Artéria Renal/diagnóstico , Fatores de Risco
20.
Cell Death Dis ; 12(4): 355, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824277

RESUMO

Phenotype switching of cardiac fibroblasts into myofibroblasts plays important role in cardiac fibrosis following myocardial infarction (MI). Cellular repressor of E1A-stimulated genes (CREG) protects against vascular and cardiac remodeling induced by angiotensin-II. However, the effects and mechanisms of CREG on phenotype switching of cardiac fibroblasts after MI are unknown. This study aimed to investigate the role of CREG on the phenotype switching of cardiac fibroblasts following MI and its mechanism. Our findings demonstrated that, compared with littermate control mice, cardiac function was deteriorated in CREG+/- mice on day 14 post-MI. Fibrosis size, αSMA, and collagen-1 expressions were increased in the border regions of CREG+/- mice on day 14 post-MI. Conversely, exogenous CREG protein significantly improved cardiac function, inhibited fibrosis, and reduced the expressions of αSMA and collagen-1 in the border regions of C57BL/6J mice on day 14. In vitro, CREG recombinant protein inhibited αSMA and collagen-1 expression and blocked the hypoxia-induced proliferation and migration of cardiac fibroblasts, which was mediated through the inhibition of cell division control protein 42 (CDC42) expression. Our findings could help in establishing new strategies based on the clarification of the role of the key molecule CREG in phenotype switching of cardiac fibroblasts following MI.


Assuntos
Fibroblastos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proteínas Repressoras/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/patologia , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...